If it's not what You are looking for type in the equation solver your own equation and let us solve it.
36^2+85^2=c^2
We move all terms to the left:
36^2+85^2-(c^2)=0
We add all the numbers together, and all the variables
-1c^2+8521=0
a = -1; b = 0; c = +8521;
Δ = b2-4ac
Δ = 02-4·(-1)·8521
Δ = 34084
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{34084}=\sqrt{4*8521}=\sqrt{4}*\sqrt{8521}=2\sqrt{8521}$$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{8521}}{2*-1}=\frac{0-2\sqrt{8521}}{-2} =-\frac{2\sqrt{8521}}{-2} =-\frac{\sqrt{8521}}{-1} $$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{8521}}{2*-1}=\frac{0+2\sqrt{8521}}{-2} =\frac{2\sqrt{8521}}{-2} =\frac{\sqrt{8521}}{-1} $
| 83-u=203 | | a^2+7^2=25^2 | | 4u-8=36 | | 4x^2-19+2x^2-17=180 | | a^2+16^2=20^2 | | -7=n+5-7n | | 5x=2x/12 | | 32.663=p+11.366 | | 7p+3=9+6p | | 11=4+8n-1 | | -10=6x+4+x | | 1/2x+3/5=2/15 | | -3x-9x+6=203x+4x | | -39=-4+v/5 | | 14x-12=39 | | -7-7(x-8)=105 | | 2x^2+13x=6x+15=0 | | 5^x2-9=5^9-x2 | | 2n+13=27 | | 8=5+4a | | -20z=540 | | x=18=-36.6 | | j/7=4 | | 13-(4r-5)=5-(7+8r) | | 8x~20=28 | | 4=m/6 | | 4x-6=6x-450 | | Y=2x-7Y=x-9 | | 8x-(3x+7)=4-(5-4×) | | 10x+3-(-9x-4)=×-5+3 | | X-9=2x-7 | | 134x=180 |